You can resolve basic heat power requirement tasks in a few seconds.

You can use the calculator for hot water boilers, water and air heat exchangers, hot water radiators, water chillers, air heaters, and other heat power generation and consumption units.

On exclusive calculator page you can use the online calculator without interference from advertisements, additional text, links and other content that is not required for the calculations themselves. A pure experience of using a calculator as with a desktop application.

An exclusive version of the calculator is available to registered users. Choose the right subscription duration and start using the exclusive service.

Select a subscription plan and enable the full service:

- Switch between metric and imperial units in one click
- Export calculation results in Word .docx or Excel .xlsx format
- Preview results on one place and copy/paste it in your favorite text editor
- Send results back to your email
- Support the future of this project

And even more... Subscribed users have access to the full set of 19 calculators available as Java™ Web start application or download Windows™ 64bit application.

Monthly cost

$250/month

Full year subscription $29.95/year

HeaterWaterQ, T_{1}, T_{2}, dP

Task: Calculate the heat output of the heat exchanger if the water flow is 2 l/s, the temperature in front of the exchanger is 25 C, and behind the exchanger is 60 C. The diameter of the connecting pipes is 60 mm.

Solution: Heat output: 292.43 kW

HeaterWaterP, T_{1}, T_{2}, dQ

Task: Calculate the flow of water through the heat exchanger if the heat output of the exchanger is 2000 kW. The temperature in front and behind the exchanger is 70 C and 90 C. The diameter of the connecting pipes is 150 mm.

Solution: Flow rate: 86.173 m3/h

ChillerWaterP, T_{1}, T_{2}, dQ

Task: Calculate the flow of water through the chiller if the output of the chiller is 2000 kW. The temperature in front and behind the chiller is 12 C and 7 C. Calculate also the diameter of the connecting pipes for a known water flow rate of 1 m/s.

Solution: Flow rate: 344.96 m3/h